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Abstract
Electro-optical detection systems have been widely utilized in many applications. The pointing accuracy is often seriously
affected by static geometric errors. This article analyses the contributions of integrant geometric error sources by
means of quaternions, and a parametric model is hence established. As to nonlinear errors, this article further proposes
a semi-parametric model that is based on least squares collocation method. Test results demonstrate that both models
can improve the pointing accuracy effectively, with latter offering better performance. The estimation variances in azi-
muth and elevation validation test have been reduced to 0.0014(�)2 and 0.0009 (�)2 from 0.0258(�)2 and 0.0017(�)2,
respectively.
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Introduction

Inertially stabilized platforms (ISPs) have been widely
used to maintain its sensor’s orientation in an accurate
direction in many applications, such as vehicles, ships,
aircrafts and spacecraft.1–4 Electro-optical detection
systems (EODSs) including optical imaging sensors and
ISPs are utilized to collect targets’ location informa-
tion, which is of great significance in scientific, military
and commercial applications.2,5 In the manufacturing
and assembly processes, it is inevitable to introduce
errors such as misalignment error, nonperpendicularity
and initialization error, which can result in the static
pointing error.6,7 As a key technical parameter of the
front measuring module, static pointing accuracy sig-
nificantly affects the target tracking and location.
Therefore, it is necessary to model and calibrate these
errors to improve the pointing accuracy.8 At present,
there are various approaches to establish the error
model, such as Debye–Hückel (D–H) equation4,9 and
coordinate transformation (rotation matrix).10 Since
quaternions can visually represent a rotation,11 this
article employs quaternions to analyse integrant errors
of EODS for the first time. There are still nonlinear
errors that cannot be compensated for by parametric
model, such as mechanical deformation and environ-
ment factors. It further improves the pointing accuracy
by means of semi-parameter model.

Pointing error modelling

The EODS is a servo-controlled system including inner
and outer gimbals, which rotate around azimuth and
elevation axes, as shown in Figure 1, with the imaging
sensor fixed on the inner gimbal. The rotated angles
are defined as azimuth and elevation, respectively. Rate
gyroscopes are utilized to measure the rotation speed
and sense the platform vibration to attenuate the dis-
turbance to the line of sight (LOS).2–5 Proper control
algorithm will increase dynamic pointing accuracy in
inertial space and hold LOS stationary to obtain clear
target images. Position sensors such as optical-
electricity encoders or rotary transformers are utilized
to obtain the rotation angle, and the spatial pointing
direction of LOS can hence be calculated.1 This article
focuses on the geometric errors of EODS without con-
sidering dynamic control error.
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Ideal pointing direction

To facilitate the analysis, the coordinate system is
established as shown in Figure 1. At the 0 positions,
azimuth axis is the OZ-axis, elevation axis is the OY-
axis and the ideal LOS is coincident with OX-axis,
which are in accord with the right-hand coordinate sys-
tem. Furthermore, the rotation angles are defined as
shown in Figure 2. The LOS OE rotates R and P
around the azimuth (OZ)- and elevation (OY)-axes,
respectively, to OE0.

Invented by W.R. Hamilton, quaternions can be
used to speed up calculations involving rotations. A
quaternion is represented by just four scalars, in con-
trast to a 33 3 rotation matrix that has nine scalar
entries.12,13 A unit quaternion is used to denote a rota-
tion.11,14 Assume the rotation around the elevation axis
is first analysed, then around the azimuth axis. The
rotation quaternions are shown in equations (1) and
(2), where the counter-clockwise is positive

Qy = cos
P

2
+ j sin

P

2
ð1Þ

Qz = cos
R

2
+ k sin

R

2
ð2Þ

The original vector can be described as OE= i.
Therefore, the ideal pointing direction vector is

OE0=(QzQy)OE(QzQy)
�= i cos R cos P

+ j sin R cos P� k sin P
ð3Þ

Integrant error analysis

Nonperpendicularity. Ideally, the rotation axes of EODS
are perpendicular to each other. However, axis nonper-
pendicularity may result from the assembling process,
with misalignments among azimuth axis, elevation axis
and the carrier. For instance, the EODS is fixed on an
unmanned aerial vehicle (UAV); if the azimuth axis tilts
from the vehicle, although the measurement of EODS is
accurate, it will introduce errors to the target location in
the whole system. The inclined angular components
around OX- and OY-axes are dvzx and dvzy, as shown in
Figure 3, where O0X0Y0Z0 is the coordinate system of the
vehicle and O1X1Y1Z1 is the coordinate system of EODS.

Take the bias around OX-axis as an example; the
process is equivalent to rotating R and P first, then it
continues to rotate a small angle dvzx around OX-axis.
The quaternion is

Q1zx=QdQzQy = cos
dvzx

2
+ i sin

dvzx

2

� �

cos
R

2
+ k sin

R

2

� �
cos

P

2
+ j sin

P

2

� �
ð4Þ

The actual pointing direction is defined as OE00, and
the inclined angles with OE0 are DR and DP in terms of
azimuth and elevation, respectively

OE00=Q1zxOEQ �1zx = i cos R cos P

+ j sin R cos P cos dvzx + sin P sin dvzxð Þ
+ k sin R cos P sin dvzx � sin P cos dvzxð Þ

ð5Þ

Figure 3. Azimuth axis nonperpendicularity.

Figure 1. Two-axial gimbal system.
LOS: line of sight.

Figure 2. Schematic diagram of rotation angles.
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As DR and DP are very small, it can be assumed that
sin DR=DR, cos DR=1 and DR3 DR=0, which
are also applied to DP. Combining equations (3) and
(5), the following can be obtained

sin (R+DR) cos (P+DP)

cos (R+DR) cos (P+DP)
=

sin R cos P cos dvzx+ sin P sin dvzx

cos R cos P

sin P+DPð Þ= � sin R cos P sin dvzx + sin P cos dvzx

8<
: ð6Þ

Then

DR’dvzx cosR tanP
DP’� dvzx sinR

�
ð7Þ

Other nonperpendicularity errors can also be com-
puted in the same way.

Optical axis misalignment and initialization error. In the
assembly process, it is also difficult to keep the LOS
aligned with OX-axis, which will result in the LOS
rotating around OY- and OZ-axes. The inclined angu-
lar components are defined as dvxy and dvxz, respec-
tively, as shown in Figure 4, where O1X1Y1Z1 is the
coordinate system of EODS and O1X# is the initial
LOS. It is obvious that the optical axis misalignment
will definitely introduce measurement error. The com-
putation is similar to section ‘‘Nonperpendicularity.’’
Meanwhile, high-precision locations are based on the
accurate initial position. The initialization error will
directly affect the LOS accuracy. The method above
also applies to initialization error analysis.

Encoder scale error. Adopting the encoder scale error
analysis of telescopes in Luck,15 the error is

R= Q1R
2p

DP= Q2R
2p

(
ð8Þ

where Q1 and Q2 are the coefficients.

Rotating shaft error. Bearings define the rotating shaft
position and allow the axes to run freely. Wobble and
runout in a bearing cause the instantaneous axis of
rotation to change and directly result in pointing
error.16 The rotating shaft error is shown in Figure 5,

where Ds is the axial runout, Dc is the radical runout
and r is the slant angle.17

Rotating shaft error will cause the encoder eccentri-
city, resulting in the indication error. As shown in
Figure 6, the dashed line denotes the original position,
and the solid line denotes the tilted encoder disc posi-
tion. L is the distance from the intersection of shaft axis
before and after tilting to the encoder centre, r is the
encoder’s radius and (rL+Dc) is the eccentric dis-
tance. u is the actual value and u0 is the ideal value.

It can be shown that

Du’� sin u 3 rQ ð9Þ

where Q=L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rLr+ r2

p
As to the azimuth and elevation axes, the slant

angles are assumed as rrzy, rrzx, rryz and rryx. For the
azimuth axis, DP=0; for the elevation axis, DR=0,
and the rest of errors could be calculated through equa-
tion (9).

Figure 6. Encoder eccentricity.Figure 4. Optical axis misalignment.

Figure 5. Rotating shaft error.
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Integrant error summary

According to the above description, the errors are pre-
sented in Table 1.

Adding all the contributions, the final integrant error
model is hence obtained

DR= dvyx tanP+ dvyz+ dvzx cos R tan P+ dvzy sin R tan P+ dvxz sec P�Q5rrzx cos R�Q6rrzy sin R

+hz +
Q2R

2p
=C1 +C2R+C3 sin R+C4 cos R+C5 sec P+C6 tan P+C7 cos R tanP+C8 sin R tan P

DP= � dvzx sin R+ dvzy cos R+ dvxy �Q3rryx cos P�Q4rryz sin P+hy +
Q1P

2p
=C9 +C10P+C11 sin P+C12 cos P+C13 sin R+C14 cos R

8>>>>><
>>>>>:

ð10Þ

where C1 � C14 are the coefficients.

Semi-parametric model

The integrant error model presented in equation (10) is
based on geometric errors, which is a parametric model.
There are still nonlinear errors that are not considered,
such as the environment factors including temperature,
atmosphere, gravity, wind and vibration.4,5 To improve
the pointing accuracy, it is necessary to compensate for
these nonlinear errors. Since a semi-parametric model
contains both parametric and nonparametric compo-
nents, it provides a convenient way to analyse nonlinea-
rities and has been widely used.18–20

Least squares collocation

As an estimation method for semi-parametric model,
least square collocation has also been widely used. The
model can be written as4,18

d=GX+ h+ e ð11Þ

where d is the pointing error observations, which is
expected to be 0; X is the input vector and G is the coef-
ficient vector. d, G and X are equivalent to parameters
in the parametric model presented in equation (10); e is
the process noise and the variance De =s2I. h denotes

the systemic error, which is the nonparametric compo-
nent as it is difficult to express with limited parametric
model.

According to equation (11), the estimated error of
the model is shown as follows

V=GX̂+ ĥ� d ð12Þ

where V is the residual and X̂ and ĥ are the estimates of
X and h.

To identify the optimal estimate of equation (12), a
commonly used solution is adding a penalty term to
standard least squares as shown in equation (13), and
relevant derivation is also presented in Hong et al.,4

Sun and Wu18 and Pan and Sun21

VTV+aĥTRfĥ=min ð13Þ

where a is the smoothing factor, which is used for the
balance between V and X; Rf is the regular matrix, rep-
resenting certain function of the nonparametric parts.

According to Lagrange multiplier rules, the
Lagrange function F is constructed as

F=VTV+aĥTRfĥ+2K(GX̂+ ĥ� d� V) ð14Þ

where K is the Lagrange multiplier. Let partial deriva-
tives of V, X̂ and ĥ in equation (14) be 0, then

K=V
K= � aRfĥ
GTK=0

8<
: ð15Þ

After the elimination of K in equation (15), combined
with equation (12), the below can be obtained

GTGX̂+GTĥ� GTd=0 ð16Þ

Table 1. Integrant error summary.

Integrant error Notion Contribution to DR Contribution to DP

Nonperpendicularity (azimuth, OX) dvzx dvzx cos R tan P �dvzx sin R
Nonperpendicularity (azimuth, OY) dvzy dvzy sin R tan P dvzy cos R
Nonperpendicularity (elevation, OX) dvyx dvyx tan P 0
Nonperpendicularity (elevation, OZ) dvyz dvyz 0
Optical axis misalignment (OY) dvxy 0 dvxy

Optical axis misalignment (OZ) dvxz dvxz sec P 0
Initialization error (elevation) hy 0 hy

Initialization error (azimuth) hz hz 0
Encoder scale error (elevation) Q1P=2p 0 Q1P=2p
Encoder scale error (azimuth) Q2R=2p Q2R=2p 0
Rotating shaft error (elevation, OX) rryx 0 �Q3rryx cos P
Rotating shaft error (elevation, OZ) rryz 0 �Q4rryz sin P
Rotating shaft error (azimuth, OX) rrzx �Q5rrzx cos R 0
Rotating shaft error (azimuth, OY) rrzy �Q6rrzy sin R 0

Q1 � Q6 are the coefficients.
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From equations (12) and (15), the below can also be
obtained

GX̂+ ĥ� d+aRfĥ=0 ð17Þ

Combining equations (16) and (17), the estimate of
X and h are finally obtained

ĥ=M�1(I� G(GTG)�1GT)d
X̂=(GTG)�1GT(d� ĥ)

�
ð18Þ

where M= I+aRf � G(GTG)�1GT

Selection of a and Rf

As the smoothing factor, a is critical for the balance
between the residual and the signal. Cross-validation
method commonly used in nonparametric estimation is
also suitable for semi-parametric estimation. It works
by withholding a single data point at a time while using
the rest of the data to predict the withheld response.
The value of a with the smallest cross-validated squared
error is then taken to be the best one.21,22

There are many approaches to choosing the regular
matrix Rf; in this article, it was chosen according to the
distance of each point. The data points are
(x1, y1), (x2, y2), . . . , (xn, yn)

Thus

Rfij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xj)

2 + (yi � yj)
2

q
(14i, j4n) ð19Þ

Test results

The data acquisition system mainly contains a high-
precision triaxial turntable, an autocollimator and the
EODS. The reflection mirror is fixed on the inner gim-
bal of EODS. The EODS is fixed on the middle axis of
the turntable. The angular range is 220� to 20� for azi-
muth and 220� to 10� for elevation, with the test appa-
ratus shown in Figure 7. The turntable provides
precision rotatory angles, the EODS rotates in the
opposite direction and the autocollimator presents the
pointing errors.

Once the systemic errors of the calibration system
are known, the compensation results by parametric
model presented in equation (10) and semi-parametric
model presented in equation (12) are given out in
Figure 8 and Table 2 in terms of azimuth and elevation.

The results demonstrated that the pointing error is
effectively compensated. Using the parametric model,

the variance in azimuth error has decreased by an order
of magnitude, and the elevation error has decreased to
0.0012(�)2 from 0.0065(�)2. In contrast, the semi-
parametric model has achieved more significant reduc-
tions. From the fitting coefficients, it can be seen that
the nonperpendicularity both from azimuth and eleva-
tion is the main error source. Meanwhile, to verify the
effectiveness of established models still further, another
set of data points are acquired. The estimation results
by both parametric and semi-parametric model are
shown in Table 3 and Figure 9.

According to the estimation results, for the azimuth,
the variance has decreased from 0.0258(�)2 to 0.0042(�)2

and 0.0014(�)2 by parametric and semi-parametric mod-
els, respectively. The mean value reduction is at least by
an order of magnitude. For the elevation, the variance
has reduced to 0.0016(�)2 and 0.0009(�)2 from the origi-
nal 0.0017(�)2. Especially, with the semi-parametric
model estimated, the absolute value of the pointing resi-
dual of azimuth is less than 0.06� except the last point
which may have a gross error. All these estimation
results indicate that both parametric and semi-
parametric models developed in this article can improve
the pointing accuracy effectively, and the latter presents
better superiority.

Conclusion

With regard to the pointing error of EODS, this article
has employed quaternions to analyse contributions
from a set of integrant geometric error sources includ-
ing nonperpendicularity, optical axis misalignment,
initialization error, encoder scale error and rotating
shaft error. It has hence established the parametric

Table 2. Compensation comparison of parametric model and semi-parametric model.

Original Parametric model Semi-parametric model

Mean (�) (azimuth) 20.1674 26.1238e 2 16 5.6585e 2 17
Variance ((�)2) (azimuth) 0.0492 0.0039 3.4308e 2 6
Mean (�) (elevation) 0.0454 1.2512e 2 16 3.3654e 2 16
Variance ((�)2) (elevation) 0.0065 0.0012 1.8077e 2 8

Figure 7. EODS calibration.
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model of pointing error. The fitting coefficient values
indicate that nonperpendicularity is the main error
source. Test results have shown that the parametric

model can compensate for the error effectively, with
the variance reduced from 0.0258(�)2 to 0.0042(�)2 for
the azimuth. In order to compensate for the nonlinear

Figure 8. Comparison of compensation results.

Figure 9. Estimation results.
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errors except geometric errors, it has further developed
the semi-parametric pointing error model, and the var-
iances in azimuth and elevation have declined to
0.0014(�)2 and 0.0009(�)2 from 0.0258(�)2 and
0.0017(�)2, respectively, which demonstrates that the
semi-parametric model is more effective and powerful.
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Appendix 1

Notation

C1 � C14 coefficients of parametric model
De variance in process noise, De =s2I
G coefficient vector of pointing error model
h systemic segment in pointing error
ĥ the estimate of h
i, j, k basis of quaternions
K Lagrange multiplier
L distance from the intersection of shaft axis

before and after tilting to the encoder
centre

M intermediate matrix,
M= I+aRf � G(GTG)�1GT

OE initial pointing direction
OE0 ideal rotated pointing direction
OE00 actual pointing direction

O0X0Y0Z0

coordinate system of the vehicle
O1X1Y1Z1

coordinate system of EODS
P rotated azimuth angle
Q coefficient of encoder eccentricity error
Q1 �Q6 coefficients, Q1 �Q2 are coefficients of

encoder scale error, Q3 �Q6 are
coefficients of encoder eccentricity error

Qy rotation quaternion of elevation
Qz rotation quaternion of azimuth

Q1zx equivalent quaternion of azimuth axis
nonperpendicularity around X-axis

Qd rotation quaternion of small angle dvzx
around X-axis

r encoder’s radius
R rotated elevation angle
Rf regular matrix, representing certain

function of the nonparametric parts
Rfij element of Rf, Rfij=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xi � xj)
2 + (yi � yj)

2
q

(14i, j4n)

T transposition of matrix
V residual of model estimation
xi azimuth of test positions (14i4n)
X input vector of pointing error model
X̂ estimate of X
yi elevation of test positions (14i4n)

a smoothing factor, used for the balance
between V and X

Dc radical runout of shaft
DP pointing error of azimuth
DR pointing error of elevation
Ds axial runout of shaft
Du encoder eccentricity error
d pointing error observations
dvxy optical axis misalignment around Y-axis
dvxz optical axis misalignment around Z-axis
dvyx elevation axis nonperpendicularity around

OX-axis
dvyz elevation axis nonperpendicularity around

OZ-axis
dvzx azimuth axis nonperpendicularity around

OX-axis
dvzy azimuth axis nonperpendicularity around

OY-axis
e process noise in pointing error
hy encoder initialization error (elevation)
hz encoder initialization error (azimuth)
u actual value of encoder
u0 ideal value of encoder
r slant angle of ideal and actual axes
rryx rotating shaft error of elevation axis

around X
rryz rotating shaft error of elevation axis

around Z
rrzx rotating shaft error of azimuth axis

around X
rrzy rotating shaft error of azimuth axis

around Y
F Lagrange function
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